APAC's Renewable Power Revolution: A Bright Future Ahead

Energy Tech Review | Wednesday, January 21, 2026

More in News

Smart cities are transforming urbanization, environmental sustainability, and energy efficiency through IoT devices and sensors. These systems adjust street lighting brightness based on vehicle or pedestrian presence, saving energy. AI and ML enable intelligent, predictive energy management.  IoT enables real-time data collection and energy consumption monitoring across various applications, including residential, commercial, and industrial buildings. Smart meters, for instance, can track electricity usage in real time, allowing consumers and utility providers to gain better visibility into energy patterns and identify areas where consumption can be optimized. IoT monitors energy use in various infrastructures, such as street lighting, public transportation, and water distribution systems. By collecting data from sensors embedded in these systems, city managers can dynamically analyze and adjust energy usage, reducing waste and improving efficiency. AI-based energy management systems can adjust buildings' heating, cooling, and lighting systems according to occupancy patterns and environmental conditions, thus reducing energy consumption. In smart grids, AI manages electricity distribution more efficiently, ensuring that energy is delivered where it is needed most while minimizing losses. Developing smart grids is a cornerstone of smart energy management in cities. Unlike traditional power grids, smart grids use digital communication technologies to monitor and manage real-time electricity flows. With decentralized energy, cities can rely less on large-scale power plants and more on localized, renewable energy sources. It reduces transmission losses and enhances energy resilience, particularly during peak demand or disruptions. It allows for better balancing of supply and demand, reducing energy waste and improving grid reliability. Smart grids, in turn, facilitate this two-way flow of energy and compensate prosumers for their contributions. It promotes energy efficiency and encourages the adoption of renewable energy. Energy storage technologies, particularly advancements in battery storage, are critical for the success of smart energy management in cities. Large-scale energy storage systems are integrated with renewable energy installations and the smart grid to enhance grid stability and resilience. The systems help reduce reliance on fossil fuel-based backup power plants and ensure a steady electricity supply during outages or peak demand periods. Microgrids allow communities, campuses, or neighborhoods to generate, store, and distribute energy, often through renewable sources. ...Read more
Emerging battery technologies like graphene, aluminum-air, magnesium-ion, and calcium-ion offer sustainable, cost-effective solutions with improved energy density, safety, and environmental responsibility for diverse applications. FREMONT CA:  The increasing demand for energy storage has led to a focus on developing advanced and sustainable battery technologies. Researchers are addressing challenges like cost, resource scarcity, and environmental impact to create economically viable and environmentally responsible energy storage solutions.  Graphene-based Batteries Graphene significantly boosts energy density and conductivity when integrated into battery components such as electrodes. It also facilitates faster charge and discharge cycles by improving electron mobility, while its efficient heat dissipation properties help reduce the risks of overheating and thermal runaway.  As a result, graphene is emerging as a transformative material in energy storage, offering substantial advancements for mobile devices and electric vehicles (EVs). One notable advancement in graphene-based batteries is the development of curved graphene, a patented material designed for supercapacitors. With its high nanoporous structure, this innovation maximizes ion storage and further enhances energy density.  Aluminum-air Batteries As the third most abundant element on earth, aluminum is fully recyclable and offers a sustainable alternative to conventional energy storage systems. The functionality of aluminum-air batteries is based on the chemical reaction between aluminum and oxygen from the air. In these systems, aluminum serves as the anode while oxygen acts as the cathode, with a saltwater or alkaline electrolyte facilitating the electrochemical reactions.  These batteries are rapidly gaining attention for their impressive energy density and lightweight design, positioning them as a promising technology for various applications, including electric vehicles (EVs) and grid-scale energy storage. Magnesium-ion Batteries  Magnesium’s multivalent nature allows it to transfer two electrons per ion, which results in a higher theoretical energy density than lithium-ion batteries, which transfer only one electron per ion. Its resistance to dendrite formation during charging further enhances safety by reducing the risk of short circuits.  While the technology is still in the research stage, recent advances in magnesium-ion battery design have boosted both voltage performance and energy density, making it a viable option for high-performance applications. With advantages such as lower costs, non-flammability, and reduced environmental impact, magnesium-ion batteries hold significant potential for both consumer and grid applications.  Calcium-ion Batteries With its lower environmental impact and abundant resources, calcium-ion technology is poised to become a key player in transitioning to more sustainable energy storage systems. These batteries can achieve energy densities, making them suitable for a wide range of applications, including consumer electronics, electric vehicles, and large-scale grid storage.  The cost-effectiveness and scalability of calcium resources provide a compelling case for their use in future energy storage. A groundbreaking calcium-oxygen system recently demonstrated impressive durability, completing 700 charge-discharge cycles, which opened new possibilities for flexible and sustainable energy storage solutions.  As the global demand for clean, reliable, and affordable energy solutions grows, these advancements offer promising pathways to enhance energy density, safety, and environmental responsibility. While challenges remain in scalability, material optimization, and cost reduction, the continued development of these cutting-edge technologies will drive the green transition and support a sustainable energy future. ...Read more
Sustainable rock breaking is crucial, with advancements in non-explosive chemical, mechanical, thermal, and electrical methods gaining traction. These eco-friendly alternatives prioritize safety, efficiency, and reduced environmental impact, driven by innovation and ESG concerns. Rock breaking is fundamental across various industries, including mining, construction, and infrastructure development. Traditionally, this has heavily relied on methods like drilling and blasting, which, while effective, carry significant environmental and safety concerns. These include noise and air pollution, ground vibrations, flyrock hazards, and greenhouse gas emissions from explosives manufacturing and use. As environmental consciousness grows and regulations become stricter, the demand for sustainable and eco-friendly rock-breaking solutions within the energy technology sector and beyond rapidly increases. Innovative and Sustainable Rock Breaking Technologies Several promising technologies are emerging as sustainable alternatives to traditional rock-breaking methods. Non-explosive chemical methods, such as expanding grouts and non-explosive demolition agents (NEDAs), utilize chemical reactions to generate expansive forces within drilled boreholes, fracturing rock with minimal noise, vibration, and environmental impact. Products like Harlen Supplies' Nex-Pand exemplify this approach by offering 100% environmentally friendly solutions. Mechanical methods, including hydraulic splitters, rock breakers, and diamond wire cutting, rely on physical force for precision and efficiency, with modern advancements further reducing noise and enhancing performance. Thermal techniques, such as thermal spalling, plasma blasting, and supercritical carbon dioxide (SC-CO₂) technology, apply heat or expansion to create stress fractures in rock, offering cost-effective and sustainable alternatives, particularly in large-scale operations. In addition, electrical methods like High-Power Electrical Pulse (HPEP) fracture systems and electrohydraulic rock breaking employ high-energy discharges to fracture rock while dramatically minimizing dust, vibration, and noise. Emerging innovations, including pneumatic fracturing (air decking), sonic wave technology, and Carbon Dioxide Phase Transition Blasting (CDPTB), present further opportunities for safe, low-disturbance rock fracturing across various industries. Collectively, these technologies are reshaping the field by offering efficient, precise, and environmentally responsible solutions for challenging excavation and demolition tasks. Latest Advancements in Sustainable Rock Breaking Technologies Sustainable rock-breaking technologies are advancing, focusing on enhanced efficiency, power, precision, hybrid systems, and electric-powered machinery. These innovations aim to match or surpass traditional explosives while ensuring environmentally friendly operations. Integrating digitalization and automation into equipment allows more precise targeting and controlled fracturing processes. Emerging hybrid systems combine non-explosive techniques with optimized drilling methods. In parallel, the mining and construction industries prioritize Environmental, Social, and Governance (ESG) factors, embracing cleaner and safer alternatives. Ongoing research also explores using sustainable materials and bio-based agents in rock-breaking applications. The field of rock breaking is undergoing a significant transformation, driven by the urgent need for more sustainable and eco-friendly solutions. The latest advancements in non-explosive chemical, mechanical, thermal, and electrical methods and emerging technologies offer promising alternatives to traditional blasting. As these technologies evolve and become more cost-competitive and widely applicable, they will play a crucial role in minimizing the environmental impact and enhancing the safety of rock-breaking operations across various industries, including the energy technology sector. ...Read more
Decarbonization, decentralization, and—above all—digitalization are driving forces behind the energy landscape. Energy-as-a-Service is a potent new business model that has emerged as a result of this change. By switching from a straightforward commodity transaction (selling kilowatt-hours) to an integrated, outcome-based service model, EaaS radically alters the relationship between energy providers and consumers. The Digital Backbone of Energy-as-a-Service The Energy-as-a-Service model represents the foundation of the digital energy economy, where advanced digital technologies enable a subscription-based and performance-driven approach to energy management. At its core, the Energy-as-a-Service framework relies on the integration of Internet of Things (IoT) devices and smart technologies such as meters, sensors, and connected Distributed Energy Resources (DERs) like solar systems and battery storage. These interconnected devices create a vast network of real-time data points, facilitating seamless monitoring, control, and optimization of energy systems. The data collected from these smart assets is processed through advanced analytics and Artificial Intelligence (AI), allowing providers to derive actionable insights for continuous optimization of energy consumption, predictive maintenance, load shifting, and accurate measurement and verification (M&V) of energy savings. This analytical capability is critical to ensuring transparency and accountability in pay-for-performance contracts. Supporting these digital capabilities are sophisticated energy management platforms that provide centralized control over complex and decentralized energy assets. Through these platforms, service providers can remotely monitor, manage, and optimize operations across multiple customer sites, significantly improving efficiency, scalability, and reliability. Innovative EaaS Business Models EaaS is not a single, uniform model but rather a flexible framework that accommodates diverse energy solutions tailored to customer needs. Several distinct business models have emerged within this framework, each offering unique value propositions and payment structures. In the Energy Efficiency as a Service model, the focus is on optimizing a facility’s energy use through upgrades such as LED lighting, HVAC systems, and building automation. Customers typically pay based on verified energy savings, following a “pay-as-you-save” arrangement that ties payments directly to performance outcomes. The Solar or Renewables as a Service model involves the installation, ownership, and maintenance of renewable energy systems like rooftop solar panels by the service provider, while customers purchase the generated power at a fixed rate per kilowatt-hour under a Power Purchase Agreement (PPA). Resilience or Storage as a Service focuses on enhancing energy reliability and stability by providing battery storage systems and microgrids that support backup power and peak demand management, often offered through flat monthly fees or capacity-based charges. The Integrated EaaS model delivers a comprehensive solution that combines energy generation, storage, efficiency measures, and management services into one bundled offering. Customers benefit from predictable energy costs through fixed monthly subscriptions, while providers deliver continuous optimization and performance assurance. Energy-as-a-Service is a disruptive force that is essential for a decentralized, decarbonized, and digital energy future. By aligning the incentives of the provider (maximizing asset performance) with the needs of the customer (predictable costs and sustainability), Energy-as-a-Service is transforming consumers into prosumers and reshaping utilities into comprehensive service partners. As digitalization advances, Energy-as-a-Service will continue to evolve, offering increasingly sophisticated, customizable, and integrated energy solutions that drive global energy transition. ...Read more