I agree We use cookies on this website to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. More info
Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Energy Tech Review
By
Energy Tech Review | Thursday, August 21, 2025
Stay ahead of the industry with exclusive feature stories on the top companies, expert insights and the latest news delivered straight to your inbox. Subscribe today.
FREMONT, CA: Electric vehicles (EVs) are gaining popularity as a sustainable transportation solution due to their lower greenhouse gas emissions and reduced reliance on fossil fuels. However, the distribution and adoption of EV batteries face several barriers, necessitating a comprehensive solution to ensure their widespread adoption and success.
Challenges in EV battery deployment and adoption
Concerns about raw material supply and ethics: The basic ingredients used in EV batteries have a complex supply chain. Lithium, cobalt, and nickel are not only pricey but also supplied from unstable geopolitical zones with substantial environmental and ethical implications. Securing a consistent, ethical supply of these materials is a critical challenge that must be overcome to ensure the EV market's long-term success.
High cost of EV batteries: The high cost of electric vehicle (EV) batteries remains a significant barrier to increasing electric vehicle adoption. Although the cost of lithium-ion batteries has dropped significantly over the last decade, they still account for a sizable amount of the entire cost of an EV. This high cost is primarily due to the high cost of raw materials like lithium, cobalt, and nickel and the sophisticated manufacturing procedures required to produce high-performance batteries. Reducing the cost of these materials and improving manufacturing efficiencies are crucial for making EVs more accessible to the average consumer.
Range anxiety and battery performance: Battery performance, particularly in terms of range and charging time, is important to EV adoption among consumers. Despite advancements, current battery technology struggles to match the range and convenience of internal combustion engine vehicles. The fear of running out of power before reaching a charging station is a major concern for potential EV buyers. Solid-state batteries, an example of an advancement in battery technology, offer faster charging times and higher energy densities, but they are still in research and are not yet widely accessible.
Reusing and disposal: As the number of EVs on the road expands, so does the amount of used batteries that must be disposed of or recycled. Hazardous compounds in EV batteries might pose environmental problems if improperly handled. Developing efficient, scalable recycling procedures is crucial for mitigating the environmental impact of EV batteries. While certain advancements have been achieved in battery recycling technologies, such as hydrometallurgical and pyrometallurgical processes, these approaches still need to be extensively used or economically viable on a broad scale.